プロジェクト

全般

プロフィール

Problem 69 » 履歴 » バージョン 3

Noppi, 2024/02/01 01:35

1 1 Noppi
[ホーム](https://redmine.noppi.jp) - [[Wiki|Project Euler]]
2
# [[Problem 69]]
3
4
## Totient Maximum
5
Euler's totient function, $\phi(n)$ [sometimes called the phi function], is defined as the number of positive integers not exceeding $n$ which are relatively prime to $n$. For example, as $1$, $2$, $4$, $5$, $7$, and $8$, are all less than or equal to nine and relatively prime to nine, $\phi(9)=6$.
6
7
| **$n$** | **Relatively Prime** | **$\phi(n)$** | **$n/\phi(n)$** |
8
|--|--|--|--|
9
| 2 | 1 | 1 | 2 |
10
| 3 | 1,2 | 2 | 1.5 |
11
| 4 | 1,3 | 2 | 2 |
12
| 5 | 1,2,3,4 | 4 | 1.25 |
13
| 6 | 1,5 | 2 | 3 |
14
| 7 | 1,2,3,4,5,6 | 6 | 1.1666... |
15
| 8 | 1,3,5,7 | 4 | 2 |
16
| 9 | 1,2,4,5,7,8 | 6 | 1.5 |
17
| 10 | 1,3,7,9 | 4 | 2.5 |
18
19
It can be seen that $n = 6$ produces a maximum $n/\phi(n)$ for $n\leq 10$.
20
21
Find the value of $n\leq 1\,000\,000$ for which $n/\phi(n)$ is a maximum.
22
23
## トーティエント関数の最大値
24
オイラーのトーティエント関数, φ(n) [時々ファイ関数とも呼ばれる]は, n と互いに素な n 未満の数の数を定める. たとえば, 1, 2, 4, 5, 7, そして8はみな9未満で9と互いに素であり, φ(9)=6.
25
26
| n | 互いに素な数 | φ(n) | n/φ(n) |
27
|--|--|--|--|
28
| 2 | 1 | 1 | 2 |
29
| 3 | 1,2 | 2 | 1.5 |
30
| 4 | 1,3 | 2 | 2 |
31
| 5 | 1,2,3,4 | 4 | 1.25 |
32
| 6 | 1,5 | 2 | 3 |
33
| 7 | 1,2,3,4,5,6 | 6 | 1.1666... |
34
| 8 | 1,3,5,7 | 4 | 2 |
35
| 9 | 1,2,4,5,7,8 | 6 | 1.5 |
36
| 10 | 1,3,7,9 | 4 | 2.5 |
37
38
n ≤ 10 では n/φ(n) の最大値は n=6 であることがわかる.
39
40
n ≤ 1,000,000で n/φ(n) が最大となる値を見つけよ.
41
42
```scheme
43 2 Noppi
(import (scheme base)
44
        (gauche base))
45
46 3 Noppi
(define (prime-generator)
47
  (let ([current 11]
48
        [primes '(2 3 5 7)]
49
        [inc 2]
50
        [next-inc (^n (if (= n 2) 4 2))])
51
    (^[]
52
      (let loop ([rest-primes primes])
53
        (if (null? rest-primes)
54
          (begin0
55
            current
56
            (set! primes (append primes `(,current)))
57
            (set! current (+ current inc))
58
            (set! inc (next-inc inc)))
59
          (let ([p (car rest-primes)])
60
            (cond
61
              [(< current (* p p))
62
               (begin0
63
                 current
64
                 (set! primes (append primes `(,current)))
65
                 (set! current (+ current inc))
66
                 (set! inc (next-inc inc)))]
67
              [(zero? (mod current p))
68
               (set! current (+ current inc))
69
               (set! inc (next-inc inc))
70
               (loop primes)]
71
              [else
72
                (loop (cdr rest-primes))])))))))
73 2 Noppi
74 3 Noppi
(define my-primes
75
  (generator->lseq 2 3 5 7 (prime-generator)))
76 2 Noppi
77 3 Noppi
;;; n の素因数が p1, p2, ... , pk の時
78
;;; φ(n) = n * (1 - 1/p1) * (1 - 1/p2) * ... * (1 - 1/pk)
79
;;; φ(n)/n = (1 - 1/p1) * (1 - 1/p2) * ... * (1 - 1/pk)
80
;;;        = (p1 - 1)/p1 * (p2 - 1)/p2 * ... * (pk - 1)/pk
81
;;; ∴ n/φ(n) = p1/(p1 - 1) * p2/(p2 - 1) * ... * pk/(pk - 1)
82
;;;
83
;;; この時の n/φ(n) を最大化することを考えると
84
;;; 1. 各 p は小さい方が良い
85
;;; 2. 各 p はたくさんあった方が良い
86
;;; 以上のことから、小さな素数をかけていって10^6を超えないところ
87
;;; までを求めれば良い
88 2 Noppi
89 3 Noppi
(define (answer max-num)
90
  (let loop ([product 1] [rest-primes my-primes])
91
    (let ([next-product (* product (car rest-primes))])
92
      (if (< max-num next-product)
93
        product
94
        (loop next-product (cdr rest-primes))))))
95
96
(define answer-69 (answer #e1e6))
97 2 Noppi
98
(format #t "69: ~d~%" answer-69)
99 1 Noppi
```