操作
Problem 69 » 履歴 » リビジョン 1
リビジョン 1/3
| 次 »
Noppi, 2024/01/30 11:21
Problem 69¶
Totient Maximum¶
Euler's totient function, $\phi(n)$ [sometimes called the phi function], is defined as the number of positive integers not exceeding $n$ which are relatively prime to $n$. For example, as $1$, $2$, $4$, $5$, $7$, and $8$, are all less than or equal to nine and relatively prime to nine, $\phi(9)=6$.
$n$ | Relatively Prime | $\phi(n)$ | $n/\phi(n)$ |
---|---|---|---|
2 | 1 | 1 | 2 |
3 | 1,2 | 2 | 1.5 |
4 | 1,3 | 2 | 2 |
5 | 1,2,3,4 | 4 | 1.25 |
6 | 1,5 | 2 | 3 |
7 | 1,2,3,4,5,6 | 6 | 1.1666... |
8 | 1,3,5,7 | 4 | 2 |
9 | 1,2,4,5,7,8 | 6 | 1.5 |
10 | 1,3,7,9 | 4 | 2.5 |
It can be seen that $n = 6$ produces a maximum $n/\phi(n)$ for $n\leq 10$.
Find the value of $n\leq 1,000,000$ for which $n/\phi(n)$ is a maximum.
トーティエント関数の最大値¶
オイラーのトーティエント関数, φ(n) [時々ファイ関数とも呼ばれる]は, n と互いに素な n 未満の数の数を定める. たとえば, 1, 2, 4, 5, 7, そして8はみな9未満で9と互いに素であり, φ(9)=6.
n | 互いに素な数 | φ(n) | n/φ(n) |
---|---|---|---|
2 | 1 | 1 | 2 |
3 | 1,2 | 2 | 1.5 |
4 | 1,3 | 2 | 2 |
5 | 1,2,3,4 | 4 | 1.25 |
6 | 1,5 | 2 | 3 |
7 | 1,2,3,4,5,6 | 6 | 1.1666... |
8 | 1,3,5,7 | 4 | 2 |
9 | 1,2,4,5,7,8 | 6 | 1.5 |
10 | 1,3,7,9 | 4 | 2.5 |
n ≤ 10 では n/φ(n) の最大値は n=6 であることがわかる.
n ≤ 1,000,000で n/φ(n) が最大となる値を見つけよ.
Noppi が2024/01/30に更新 · 1件の履歴