プロジェクト

全般

プロフィール

Problem 69 » 履歴 » リビジョン 2

リビジョン 1 (Noppi, 2024/01/30 11:21) → リビジョン 2/3 (Noppi, 2024/01/30 12:39)

[ホーム](https://redmine.noppi.jp) - [[Wiki|Project Euler]] 
 # [[Problem 69]] 

 ## Totient Maximum 
 Euler's totient function, $\phi(n)$ [sometimes called the phi function], is defined as the number of positive integers not exceeding $n$ which are relatively prime to $n$. For example, as $1$, $2$, $4$, $5$, $7$, and $8$, are all less than or equal to nine and relatively prime to nine, $\phi(9)=6$. 

 | **$n$** | **Relatively Prime** | **$\phi(n)$** | **$n/\phi(n)$** | 
 |--|--|--|--| 
 | 2 | 1 | 1 | 2 | 
 | 3 | 1,2 | 2 | 1.5 | 
 | 4 | 1,3 | 2 | 2 | 
 | 5 | 1,2,3,4 | 4 | 1.25 | 
 | 6 | 1,5 | 2 | 3 | 
 | 7 | 1,2,3,4,5,6 | 6 | 1.1666... | 
 | 8 | 1,3,5,7 | 4 | 2 | 
 | 9 | 1,2,4,5,7,8 | 6 | 1.5 | 
 | 10 | 1,3,7,9 | 4 | 2.5 | 

 It can be seen that $n = 6$ produces a maximum $n/\phi(n)$ for $n\leq 10$. 

 Find the value of $n\leq 1\,000\,000$ for which $n/\phi(n)$ is a maximum. 

 ## トーティエント関数の最大値 
 オイラーのトーティエント関数, φ(n) [時々ファイ関数とも呼ばれる]は, n と互いに素な n 未満の数の数を定める. たとえば, 1, 2, 4, 5, 7, そして8はみな9未満で9と互いに素であり, φ(9)=6. 

 | n | 互いに素な数 | φ(n) | n/φ(n) | 
 |--|--|--|--| 
 | 2 | 1 | 1 | 2 | 
 | 3 | 1,2 | 2 | 1.5 | 
 | 4 | 1,3 | 2 | 2 | 
 | 5 | 1,2,3,4 | 4 | 1.25 | 
 | 6 | 1,5 | 2 | 3 | 
 | 7 | 1,2,3,4,5,6 | 6 | 1.1666... | 
 | 8 | 1,3,5,7 | 4 | 2 | 
 | 9 | 1,2,4,5,7,8 | 6 | 1.5 | 
 | 10 | 1,3,7,9 | 4 | 2.5 | 

 n ≤ 10 では n/φ(n) の最大値は n=6 であることがわかる. 

 n ≤ 1,000,000で n/φ(n) が最大となる値を見つけよ. 

 ```scheme 
 (import (scheme base) 
         (gauche base)) 

 (define (factorize num) 
   (assume (exact-integer? num)) 
   (assume (<= 2 num)) 
   (let loop ([current 2] [rest num] [result '()]) 
     (cond 
       [(= rest 1) (reverse result)] 
       [(and (< num (* current current)) 
             (null? result)) 
        '()] 
       [(< num (* current current)) 
        (reverse (cons rest result))] 
       [(and (zero? (mod rest current)) 
             (null? result)) 
        (loop current 
              (div rest current) 
              (cons current result))] 
       [(and (zero? (mod rest current)) 
             (= current (car result))) 
        (loop current 
              (div rest current) 
              result)] 
       [(zero? (mod rest current)) 
        (loop current 
              (div rest current) 
              (cons current result))] 
       [else 
         (loop (+ current 1) rest result)]))) 

 ; https://manabitimes.jp/math/667 
 (define (totient num) 
   (assume (exact-integer? num)) 
   (assume (<= 2 num)) 
   (let ([lis (factorize num)]) 
     (if (null? lis) 
       (- num 1) 
       (apply * num 
              (map (^n (- 1 (/ 1 n))) 
                   lis))))) 

 (define (totient-100_0000-list) 
   (map (^n 
          (let ([totient-n (totient n)]) 
            `(,n ,totient-n ,(/ n totient-n)))) 
        (iota (- #e1e6 1) 2))) 

 (define answer-69 
   (car 
     (fold (^[lis current] 
             (if (< (caddr current) (caddr lis)) 
               lis 
               current)) 
           '(0 0 0) 
           (totient-100_0000-list)))) 

 (format #t "69: ~d~%" answer-69) 
 ```