プロジェクト

全般

プロフィール

Problem 69 » 履歴 » バージョン 2

Noppi, 2024/01/30 12:39

1 1 Noppi
[ホーム](https://redmine.noppi.jp) - [[Wiki|Project Euler]]
2
# [[Problem 69]]
3
4
## Totient Maximum
5
Euler's totient function, $\phi(n)$ [sometimes called the phi function], is defined as the number of positive integers not exceeding $n$ which are relatively prime to $n$. For example, as $1$, $2$, $4$, $5$, $7$, and $8$, are all less than or equal to nine and relatively prime to nine, $\phi(9)=6$.
6
7
| **$n$** | **Relatively Prime** | **$\phi(n)$** | **$n/\phi(n)$** |
8
|--|--|--|--|
9
| 2 | 1 | 1 | 2 |
10
| 3 | 1,2 | 2 | 1.5 |
11
| 4 | 1,3 | 2 | 2 |
12
| 5 | 1,2,3,4 | 4 | 1.25 |
13
| 6 | 1,5 | 2 | 3 |
14
| 7 | 1,2,3,4,5,6 | 6 | 1.1666... |
15
| 8 | 1,3,5,7 | 4 | 2 |
16
| 9 | 1,2,4,5,7,8 | 6 | 1.5 |
17
| 10 | 1,3,7,9 | 4 | 2.5 |
18
19
It can be seen that $n = 6$ produces a maximum $n/\phi(n)$ for $n\leq 10$.
20
21
Find the value of $n\leq 1\,000\,000$ for which $n/\phi(n)$ is a maximum.
22
23
## トーティエント関数の最大値
24
オイラーのトーティエント関数, φ(n) [時々ファイ関数とも呼ばれる]は, n と互いに素な n 未満の数の数を定める. たとえば, 1, 2, 4, 5, 7, そして8はみな9未満で9と互いに素であり, φ(9)=6.
25
26
| n | 互いに素な数 | φ(n) | n/φ(n) |
27
|--|--|--|--|
28
| 2 | 1 | 1 | 2 |
29
| 3 | 1,2 | 2 | 1.5 |
30
| 4 | 1,3 | 2 | 2 |
31
| 5 | 1,2,3,4 | 4 | 1.25 |
32
| 6 | 1,5 | 2 | 3 |
33
| 7 | 1,2,3,4,5,6 | 6 | 1.1666... |
34
| 8 | 1,3,5,7 | 4 | 2 |
35
| 9 | 1,2,4,5,7,8 | 6 | 1.5 |
36
| 10 | 1,3,7,9 | 4 | 2.5 |
37
38
n ≤ 10 では n/φ(n) の最大値は n=6 であることがわかる.
39
40
n ≤ 1,000,000で n/φ(n) が最大となる値を見つけよ.
41
42
```scheme
43 2 Noppi
(import (scheme base)
44
        (gauche base))
45
46
(define (factorize num)
47
  (assume (exact-integer? num))
48
  (assume (<= 2 num))
49
  (let loop ([current 2] [rest num] [result '()])
50
    (cond
51
      [(= rest 1) (reverse result)]
52
      [(and (< num (* current current))
53
            (null? result))
54
       '()]
55
      [(< num (* current current))
56
       (reverse (cons rest result))]
57
      [(and (zero? (mod rest current))
58
            (null? result))
59
       (loop current
60
             (div rest current)
61
             (cons current result))]
62
      [(and (zero? (mod rest current))
63
            (= current (car result)))
64
       (loop current
65
             (div rest current)
66
             result)]
67
      [(zero? (mod rest current))
68
       (loop current
69
             (div rest current)
70
             (cons current result))]
71
      [else
72
        (loop (+ current 1) rest result)])))
73
74
; https://manabitimes.jp/math/667
75
(define (totient num)
76
  (assume (exact-integer? num))
77
  (assume (<= 2 num))
78
  (let ([lis (factorize num)])
79
    (if (null? lis)
80
      (- num 1)
81
      (apply * num
82
             (map (^n (- 1 (/ 1 n)))
83
                  lis)))))
84
85
(define (totient-100_0000-list)
86
  (map (^n
87
         (let ([totient-n (totient n)])
88
           `(,n ,totient-n ,(/ n totient-n))))
89
       (iota (- #e1e6 1) 2)))
90
91
(define answer-69
92
  (car
93
    (fold (^[lis current]
94
            (if (< (caddr current) (caddr lis))
95
              lis
96
              current))
97
          '(0 0 0)
98
          (totient-100_0000-list))))
99
100
(format #t "69: ~d~%" answer-69)
101 1 Noppi
```