Problem 69 » 履歴 » バージョン 1
Noppi, 2024/01/30 11:21
1 | 1 | Noppi | [ホーム](https://redmine.noppi.jp) - [[Wiki|Project Euler]] |
---|---|---|---|
2 | # [[Problem 69]] |
||
3 | |||
4 | ## Totient Maximum |
||
5 | Euler's totient function, $\phi(n)$ [sometimes called the phi function], is defined as the number of positive integers not exceeding $n$ which are relatively prime to $n$. For example, as $1$, $2$, $4$, $5$, $7$, and $8$, are all less than or equal to nine and relatively prime to nine, $\phi(9)=6$. |
||
6 | |||
7 | | **$n$** | **Relatively Prime** | **$\phi(n)$** | **$n/\phi(n)$** | |
||
8 | |--|--|--|--| |
||
9 | | 2 | 1 | 1 | 2 | |
||
10 | | 3 | 1,2 | 2 | 1.5 | |
||
11 | | 4 | 1,3 | 2 | 2 | |
||
12 | | 5 | 1,2,3,4 | 4 | 1.25 | |
||
13 | | 6 | 1,5 | 2 | 3 | |
||
14 | | 7 | 1,2,3,4,5,6 | 6 | 1.1666... | |
||
15 | | 8 | 1,3,5,7 | 4 | 2 | |
||
16 | | 9 | 1,2,4,5,7,8 | 6 | 1.5 | |
||
17 | | 10 | 1,3,7,9 | 4 | 2.5 | |
||
18 | |||
19 | It can be seen that $n = 6$ produces a maximum $n/\phi(n)$ for $n\leq 10$. |
||
20 | |||
21 | Find the value of $n\leq 1\,000\,000$ for which $n/\phi(n)$ is a maximum. |
||
22 | |||
23 | ## トーティエント関数の最大値 |
||
24 | オイラーのトーティエント関数, φ(n) [時々ファイ関数とも呼ばれる]は, n と互いに素な n 未満の数の数を定める. たとえば, 1, 2, 4, 5, 7, そして8はみな9未満で9と互いに素であり, φ(9)=6. |
||
25 | |||
26 | | n | 互いに素な数 | φ(n) | n/φ(n) | |
||
27 | |--|--|--|--| |
||
28 | | 2 | 1 | 1 | 2 | |
||
29 | | 3 | 1,2 | 2 | 1.5 | |
||
30 | | 4 | 1,3 | 2 | 2 | |
||
31 | | 5 | 1,2,3,4 | 4 | 1.25 | |
||
32 | | 6 | 1,5 | 2 | 3 | |
||
33 | | 7 | 1,2,3,4,5,6 | 6 | 1.1666... | |
||
34 | | 8 | 1,3,5,7 | 4 | 2 | |
||
35 | | 9 | 1,2,4,5,7,8 | 6 | 1.5 | |
||
36 | | 10 | 1,3,7,9 | 4 | 2.5 | |
||
37 | |||
38 | n ≤ 10 では n/φ(n) の最大値は n=6 であることがわかる. |
||
39 | |||
40 | n ≤ 1,000,000で n/φ(n) が最大となる値を見つけよ. |
||
41 | |||
42 | ```scheme |
||
43 | ``` |