Problem 49 » 履歴 » バージョン 1
Noppi, 2024/01/17 04:11
1 | 1 | Noppi | [ホーム](https://redmine.noppi.jp) - [[Wiki|Project Euler]] |
---|---|---|---|
2 | # [[Problem 49]] |
||
3 | |||
4 | ## Prime Permutations |
||
5 | The arithmetic sequence, $1487, 4817, 8147$, in which each of the terms increases by $3330$, is unusual in two ways: (i) each of the three terms are prime, and, (ii) each of the $4$-digit numbers are permutations of one another. |
||
6 | |||
7 | There are no arithmetic sequences made up of three $1$-, $2$-, or $3$-digit primes, exhibiting this property, but there is one other $4$-digit increasing sequence. |
||
8 | |||
9 | What $12$-digit number do you form by concatenating the three terms in this sequence? |
||
10 | |||
11 | ## 素数数列 |
||
12 | 項差3330の等差数列$1487, 4817, 8147$は次の2つの変わった性質を持つ. |
||
13 | |||
14 | 1. 3つの項はそれぞれ素数である. |
||
15 | 1. 各項は他の項の置換で表される. |
||
16 | |||
17 | 1, 2, 3桁の素数にはこのような性質を持った数列は存在しないが, 4桁の増加列にはもう1つ存在する. |
||
18 | |||
19 | それではこの数列の3つの項を連結した12桁の数を求めよ. |
||
20 | |||
21 | ```scheme |
||
22 | ``` |