操作
Problem 49 » 履歴 » リビジョン 1
リビジョン 1/2
| 次 »
Noppi, 2024/01/17 04:11
Problem 49¶
Prime Permutations¶
The arithmetic sequence, $1487, 4817, 8147$, in which each of the terms increases by $3330$, is unusual in two ways: (i) each of the three terms are prime, and, (ii) each of the $4$-digit numbers are permutations of one another.
There are no arithmetic sequences made up of three $1$-, $2$-, or $3$-digit primes, exhibiting this property, but there is one other $4$-digit increasing sequence.
What $12$-digit number do you form by concatenating the three terms in this sequence?
素数数列¶
項差3330の等差数列$1487, 4817, 8147$は次の2つの変わった性質を持つ.
- 3つの項はそれぞれ素数である.
- 各項は他の項の置換で表される.
1, 2, 3桁の素数にはこのような性質を持った数列は存在しないが, 4桁の増加列にはもう1つ存在する.
それではこの数列の3つの項を連結した12桁の数を求めよ.
Noppi が2024/01/17に更新 · 1件の履歴