Problem 30 » 履歴 » バージョン 1
Noppi, 2024/01/12 13:57
| 1 | 1 | Noppi | [ホーム](https://redmine.noppi.jp) - [[Wiki|Project Euler]] |
|---|---|---|---|
| 2 | # [[Problem 30]] |
||
| 3 | |||
| 4 | ## Digit Fifth Powers |
||
| 5 | <p>Surprisingly there are only three numbers that can be written as the sum of fourth powers of their digits: |
||
| 6 | \begin{align} |
||
| 7 | 1634 &= 1^4 + 6^4 + 3^4 + 4^4\\ |
||
| 8 | 8208 &= 8^4 + 2^4 + 0^4 + 8^4\\ |
||
| 9 | 9474 &= 9^4 + 4^4 + 7^4 + 4^4 |
||
| 10 | \end{align}</p> |
||
| 11 | |||
| 12 | As $1 = 1^4$ is not a sum it is not included. |
||
| 13 | |||
| 14 | The sum of these numbers is $1634 + 8208 + 9474 = 19316$. |
||
| 15 | |||
| 16 | Find the sum of all the numbers that can be written as the sum of fifth powers of their digits. |
||
| 17 | |||
| 18 | ## 各桁の5乗 |
||
| 19 | <p>驚くべきことに, 各桁を4乗した数の和が元の数と一致する数は3つしかない. |
||
| 20 | \begin{align} |
||
| 21 | 1634 &= 1^4 + 6^4 + 3^4 + 4^4\\ |
||
| 22 | 8208 &= 8^4 + 2^4 + 0^4 + 8^4\\ |
||
| 23 | 9474 &= 9^4 + 4^4 + 7^4 + 4^4 |
||
| 24 | \end{align}</p> |
||
| 25 | |||
| 26 | ただし, $1 = 1^4$ は含まないものとする. この数たちの和は 1634 + 8208 + 9474 = 19316 である. |
||
| 27 | |||
| 28 | 各桁を5乗した数の和が元の数と一致するような数の総和を求めよ. |
||
| 29 | |||
| 30 | ```scheme |
||
| 31 | ``` |