Problem 30 » 履歴 » バージョン 1
Noppi, 2024/01/12 13:57
1 | 1 | Noppi | [ホーム](https://redmine.noppi.jp) - [[Wiki|Project Euler]] |
---|---|---|---|
2 | # [[Problem 30]] |
||
3 | |||
4 | ## Digit Fifth Powers |
||
5 | <p>Surprisingly there are only three numbers that can be written as the sum of fourth powers of their digits: |
||
6 | \begin{align} |
||
7 | 1634 &= 1^4 + 6^4 + 3^4 + 4^4\\ |
||
8 | 8208 &= 8^4 + 2^4 + 0^4 + 8^4\\ |
||
9 | 9474 &= 9^4 + 4^4 + 7^4 + 4^4 |
||
10 | \end{align}</p> |
||
11 | |||
12 | As $1 = 1^4$ is not a sum it is not included. |
||
13 | |||
14 | The sum of these numbers is $1634 + 8208 + 9474 = 19316$. |
||
15 | |||
16 | Find the sum of all the numbers that can be written as the sum of fifth powers of their digits. |
||
17 | |||
18 | ## 各桁の5乗 |
||
19 | <p>驚くべきことに, 各桁を4乗した数の和が元の数と一致する数は3つしかない. |
||
20 | \begin{align} |
||
21 | 1634 &= 1^4 + 6^4 + 3^4 + 4^4\\ |
||
22 | 8208 &= 8^4 + 2^4 + 0^4 + 8^4\\ |
||
23 | 9474 &= 9^4 + 4^4 + 7^4 + 4^4 |
||
24 | \end{align}</p> |
||
25 | |||
26 | ただし, $1 = 1^4$ は含まないものとする. この数たちの和は 1634 + 8208 + 9474 = 19316 である. |
||
27 | |||
28 | 各桁を5乗した数の和が元の数と一致するような数の総和を求めよ. |
||
29 | |||
30 | ```scheme |
||
31 | ``` |