Problem 30 » 履歴 » リビジョン 1
リビジョン 1/2
| 次 »
Noppi, 2024/01/12 13:57
Problem 30¶
Digit Fifth Powers¶
Surprisingly there are only three numbers that can be written as the sum of fourth powers of their digits: \begin{align} 1634 &= 1^4 + 6^4 + 3^4 + 4^4\\ 8208 &= 8^4 + 2^4 + 0^4 + 8^4\\ 9474 &= 9^4 + 4^4 + 7^4 + 4^4 \end{align}
As $1 = 1^4$ is not a sum it is not included.
The sum of these numbers is $1634 + 8208 + 9474 = 19316$.
Find the sum of all the numbers that can be written as the sum of fifth powers of their digits.
各桁の5乗¶
驚くべきことに, 各桁を4乗した数の和が元の数と一致する数は3つしかない. \begin{align} 1634 &= 1^4 + 6^4 + 3^4 + 4^4\\ 8208 &= 8^4 + 2^4 + 0^4 + 8^4\\ 9474 &= 9^4 + 4^4 + 7^4 + 4^4 \end{align}
ただし, $1 = 1^4$ は含まないものとする. この数たちの和は 1634 + 8208 + 9474 = 19316 である.
各桁を5乗した数の和が元の数と一致するような数の総和を求めよ.
Noppi が2024/01/12に更新 · 1件の履歴