操作
Problem 25 » 履歴 » リビジョン 2
« 前 |
リビジョン 2/3
(差分)
| 次 »
Noppi, 2024/01/06 09:37
Problem 25¶
$1000$-digit Fibonacci Number¶
The Fibonacci sequence is defined by the recurrence relation:
$F_n = F_{n - 1} + F_{n - 2}$, where $F_1 = 1$ and $F_2 = 1$.
Hence the first $12$ terms will be:
$F_1 = 1$
$F_2 = 1$
$F_3 = 2$
$F_4 = 3$
$F_5 = 5$
$F_6 = 8$
$F_7 = 13$
$F_8 = 21$
$F_9 = 34$
$F_{10} = 55$
$F_{11} = 89$
$F_{12} = 144$
The $12$th term, $F_{12}$, is the first term to contain three digits.
What is the index of the first term in the Fibonacci sequence to contain $1000$ digits?
1000桁のフィボナッチ数¶
フィボナッチ数列は以下の漸化式で定義される:
$F_n = F_{n - 1} + F_{n - 2}$, ただし $F_1 = 1$ and $F_2 = 1$.
最初の12項は以下である.
$F_1 = 1$
$F_2 = 1$
$F_3 = 2$
$F_4 = 3$
$F_5 = 5$
$F_6 = 8$
$F_7 = 13$
$F_8 = 21$
$F_9 = 34$
$F_{10} = 55$
$F_{11} = 89$
$F_{12} = 144$
12番目の項, $F_{12}$ が3桁になる最初の項である.
1000桁になる最初の項の番号を答えよ.
(import (scheme base)
(gauche base)
(scheme list))
(define fib-generator
(let ([f1 0] [f2 1])
(let ([fib (^[]
(let ([next (+ f1 f2)])
(set! f1 f2)
(set! f2 next)
next))])
fib)))
(define fib-list (generator->lseq 0 1 fib-generator))
(define answer-25
(list-index (^n (<= (expt 10 999) n)) fib-list))
(format #t "25: ~d~%" answer-25)
Noppi が2024/01/06に更新 · 2件の履歴