プロジェクト

全般

プロフィール

操作

Problem 25 » 履歴 » リビジョン 1

リビジョン 1/3 | 次 »
Noppi, 2024/01/06 09:14


ホーム - Project Euler

Problem 25

$1000$-digit Fibonacci Number

The Fibonacci sequence is defined by the recurrence relation:

$F_n = F_{n - 1} + F_{n - 2}$, where $F_1 = 1$ and $F_2 = 1$.

Hence the first $12$ terms will be:

$F_1 = 1$
$F_2 = 1$
$F_3 = 2$
$F_4 = 3$
$F_5 = 5$
$F_6 = 8$
$F_7 = 13$
$F_8 = 21$
$F_9 = 34$
$F_{10} = 55$
$F_{11} = 89$
$F_{12} = 144$

The $12$th term, $F_{12}$, is the first term to contain three digits.

What is the index of the first term in the Fibonacci sequence to contain $1000$ digits?

1000桁のフィボナッチ数

フィボナッチ数列は以下の漸化式で定義される:

$F_n = F_{n - 1} + F_{n - 2}$, ただし $F_1 = 1$ and $F_2 = 1$.

最初の12項は以下である.

$F_1 = 1$
$F_2 = 1$
$F_3 = 2$
$F_4 = 3$
$F_5 = 5$
$F_6 = 8$
$F_7 = 13$
$F_8 = 21$
$F_9 = 34$
$F_{10} = 55$
$F_{11} = 89$
$F_{12} = 144$

12番目の項, $F_{12}$ が3桁になる最初の項である.

1000桁になる最初の項の番号を答えよ.

Noppi2024/01/06に更新 · 1件の履歴