Problem 12 » 履歴 » バージョン 1
Noppi, 2023/12/29 14:22
| 1 | 1 | Noppi | [ホーム](https://redmine.noppi.jp) - [[Wiki|Project Euler]] |
|---|---|---|---|
| 2 | # [[Problem 12]] |
||
| 3 | |||
| 4 | ## Highly Divisible Triangular Number |
||
| 5 | The sequence of triangle numbers is generated by adding the natural numbers. So the $7$<sup>th</sup> triangle number would be $1 + 2 + 3 + 4 + 5 + 6 + 7 = 28$. The first ten terms would be: |
||
| 6 | $$1, 3, 6, 10, 15, 21, 28, 36, 45, 55, \dots$$ |
||
| 7 | Let us list the factors of the first seven triangle numbers: |
||
| 8 | |||
| 9 | **1:** 1 |
||
| 10 | **3:** 1,3 |
||
| 11 | **6:** 1,2,3,6 |
||
| 12 | **10:** 1,2,5,10 |
||
| 13 | **15:** 1,3,5,15 |
||
| 14 | **21:** 1,3,7,21 |
||
| 15 | **28:** 1,2,4,7,14,28 |
||
| 16 | |||
| 17 | We can see that $28$ is the first triangle number to have over five divisors. |
||
| 18 | What is the value of the first triangle number to have over five hundred divisors? |
||
| 19 | |||
| 20 | ## 高度整除三角数 |
||
| 21 | 三角数の数列は自然数の和で表わされ, 7番目の三角数は 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28 である. 三角数の最初の10項は: |
||
| 22 | $$1, 3, 6, 10, 15, 21, 28, 36, 45, 55, \dots$$ |
||
| 23 | となる. |
||
| 24 | |||
| 25 | 最初の7項について, その約数を列挙すると, 以下のとおり. |
||
| 26 | |||
| 27 | **1:** 1 |
||
| 28 | **3:** 1,3 |
||
| 29 | **6:** 1,2,3,6 |
||
| 30 | **10:** 1,2,5,10 |
||
| 31 | **15:** 1,3,5,15 |
||
| 32 | **21:** 1,3,7,21 |
||
| 33 | **28:** 1,2,4,7,14,28 |
||
| 34 | |||
| 35 | これから, 7番目の三角数である28は, 5個より多く約数をもつ最初の三角数であることが分かる. |
||
| 36 | では, 500個より多く約数をもつ最初の三角数はいくつか. |
||
| 37 | |||
| 38 | ```scheme |
||
| 39 | ``` |