Problem 62 » 履歴 » バージョン 1
Noppi, 2024/01/27 13:35
| 1 | 1 | Noppi | [ホーム](https://redmine.noppi.jp) - [[Wiki|Project Euler]] |
|---|---|---|---|
| 2 | # [[Problem 62]] |
||
| 3 | |||
| 4 | ## Cubic Permutations |
||
| 5 | The cube, $41063625$ ($345^3$), can be permuted to produce two other cubes: $56623104$ ($384^3$) and $66430125$ ($405^3$). In fact, $41063625$ is the smallest cube which has exactly three permutations of its digits which are also cube. |
||
| 6 | |||
| 7 | Find the smallest cube for which exactly five permutations of its digits are cube. |
||
| 8 | |||
| 9 | ## 立方数置換 |
||
| 10 | 立方数 $41063625$ ($345^3$) は, 桁の順番を入れ替えると2つの立方数になる: $56623104$ ($384^3$) と $66430125$ ($405^3$) である. $41063625$は, 立方数になるような桁の置換をちょうど3つもつ最小の立方数である. |
||
| 11 | |||
| 12 | 立方数になるような桁の置換をちょうど5つもつ最小の立方数を求めよ. |
||
| 13 | |||
| 14 | ```scheme |
||
| 15 | ``` |