プロジェクト

全般

プロフィール

Problem 57 » 履歴 » バージョン 3

Noppi, 2024/01/23 04:58

1 1 Noppi
[ホーム](https://redmine.noppi.jp) - [[Wiki|Project Euler]]
2
# [[Problem 57]]
3
4
## Square Root Convergents
5
It is possible to show that the square root of two can be expressed as an infinite continued fraction.
6
7
<p style="text-align:center">$\sqrt 2 =1+ \frac 1 {2+ \frac 1 {2 +\frac 1 {2+ \dots}}}$</p>
8
9
By expanding this for the first four iterations, we get:
10
11
$1 + \frac 1 2 = \frac  32 = 1.5$
12
$1 + \frac 1 {2 + \frac 1 2} = \frac 7 5 = 1.4$
13
$1 + \frac 1 {2 + \frac 1 {2+\frac 1 2}} = \frac {17}{12} = 1.41666 \dots$
14
$1 + \frac 1 {2 + \frac 1 {2+\frac 1 {2+\frac 1 2}}} = \frac {41}{29} = 1.41379 \dots$
15
16
The next three expansions are $\frac {99}{70}$, $\frac {239}{169}$, and $\frac {577}{408}$, but the eighth expansion, $\frac {1393}{985}$, is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.
17
18
In the first one-thousand expansions, how many fractions contain a numerator with more digits than the denominator?
19
20
## 平方根の近似分数
21
2の平方根は無限に続く連分数で表すことができる.
22
23
<div style="text-align:center">√ 2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...</div>
24
25
最初の4回の繰り返しを展開すると以下が得られる.
26
27
1 + 1/2 = 3/2 = 1.5
28
1 + 1/(2 + 1/2) = 7/5 = 1.4
29
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
30
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...
31
32
次の3つの項は99/70, 239/169, 577/408である. 第8項は1393/985である. これは分子の桁数が分母の桁数を超える最初の例である.
33
34
最初の1000項を考えたとき, 分子の桁数が分母の桁数を超える項はいくつあるか?
35
36
```scheme
37 2 Noppi
;;;
38 3 Noppi
;;; Gaucheコード(0.9.14_pre1で修正されて正しい答になることを確認)
39 2 Noppi
;;;
40
(import (scheme base)
41
        (gauche base)
42
        (scheme inexact))
43
44
(define (digit-num num)
45
  (assume (exact-integer? num))
46
  (assume (not (negative? num)))
47
  (if (zero? num)
48
    1
49
    (+ (floor->exact (log num 10))
50
       1)))
51
52
(define continued-fraction
53
  (let loop ([index 1] [current 1] [result '()])
54
    (if (< 1000 index)
55
      (reverse result)
56
      (let ([next (+ 1
57
                     (/ 1 
58
                        (+ current 1)))])
59
        (loop (+ index 1)
60
              next
61
              (cons next result))))))
62
63
(define target-fraction
64
  (filter (^r
65
            (< (digit-num (denominator r))
66
               (digit-num (numerator r))))
67
          continued-fraction))
68
69
(define answer-57
70
  (length target-fraction))
71
72
(format #t "57: ~d~%" answer-57)
73
```
74
75
```scheme
76
;;;
77
;;; Chez Schemeコード(正解)
78
;;;
79
#!r6rs
80
#!chezscheme
81
82
(import (chezscheme))
83
84
(define (digit-num num)
85
  (assert (exact? num))
86
  (assert (integer? num))
87
  (assert (not (negative? num)))
88
  (if (zero? num)
89
    1
90
    (+ (exact (floor (log num 10)))
91
       1)))
92
93
(define continued-fraction
94
  (let loop ([index 1] [current 1] [result '()])
95
    (if (< 1000 index)
96
      (reverse result)
97
      (let ([next (+ 1
98
                     (/ 1 
99
                        (+ current 1)))])
100
        (loop (+ index 1)
101
              next
102
              (cons next result))))))
103
104
(define target-fraction
105
  (filter (lambda (r)
106
            (< (digit-num (denominator r))
107
               (digit-num (numerator r))))
108
          continued-fraction))
109
110
(define answer-57
111
  (length target-fraction))
112
113
(printf "57: ~d~%" answer-57)
114 1 Noppi
```