プロジェクト

全般

プロフィール

Problem 57 » 履歴 » バージョン 1

Noppi, 2024/01/22 10:50

1 1 Noppi
[ホーム](https://redmine.noppi.jp) - [[Wiki|Project Euler]]
2
# [[Problem 57]]
3
4
## Square Root Convergents
5
It is possible to show that the square root of two can be expressed as an infinite continued fraction.
6
7
<p style="text-align:center">$\sqrt 2 =1+ \frac 1 {2+ \frac 1 {2 +\frac 1 {2+ \dots}}}$</p>
8
9
By expanding this for the first four iterations, we get:
10
11
$1 + \frac 1 2 = \frac  32 = 1.5$
12
$1 + \frac 1 {2 + \frac 1 2} = \frac 7 5 = 1.4$
13
$1 + \frac 1 {2 + \frac 1 {2+\frac 1 2}} = \frac {17}{12} = 1.41666 \dots$
14
$1 + \frac 1 {2 + \frac 1 {2+\frac 1 {2+\frac 1 2}}} = \frac {41}{29} = 1.41379 \dots$
15
16
The next three expansions are $\frac {99}{70}$, $\frac {239}{169}$, and $\frac {577}{408}$, but the eighth expansion, $\frac {1393}{985}$, is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.
17
18
In the first one-thousand expansions, how many fractions contain a numerator with more digits than the denominator?
19
20
## 平方根の近似分数
21
2の平方根は無限に続く連分数で表すことができる.
22
23
<div style="text-align:center">√ 2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...</div>
24
25
最初の4回の繰り返しを展開すると以下が得られる.
26
27
1 + 1/2 = 3/2 = 1.5
28
1 + 1/(2 + 1/2) = 7/5 = 1.4
29
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
30
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...
31
32
次の3つの項は99/70, 239/169, 577/408である. 第8項は1393/985である. これは分子の桁数が分母の桁数を超える最初の例である.
33
34
最初の1000項を考えたとき, 分子の桁数が分母の桁数を超える項はいくつあるか?
35
36
```scheme
37
```