Problem 55 » 履歴 » バージョン 1
Noppi, 2024/01/20 08:23
| 1 | 1 | Noppi | [ホーム](https://redmine.noppi.jp) - [[Wiki|Project Euler]] |
|---|---|---|---|
| 2 | # [[Problem 55]] |
||
| 3 | |||
| 4 | ## Lychrel Numbers |
||
| 5 | If we take $47$, reverse and add, $47 + 74 = 121$, which is palindromic. |
||
| 6 | |||
| 7 | <p>Not all numbers produce palindromes so quickly. For example,</p> |
||
| 8 | \begin{align} |
||
| 9 | 349 + 943 &= 1292\\ |
||
| 10 | 1292 + 2921 &= 4213\\ |
||
| 11 | 4213 + 3124 &= 7337 |
||
| 12 | \end{align} |
||
| 13 | |||
| 14 | That is, $349$ took three iterations to arrive at a palindrome. |
||
| 15 | |||
| 16 | Although no one has proved it yet, it is thought that some numbers, like $196$, never produce a palindrome. A number that never forms a palindrome through the reverse and add process is called a Lychrel number. Due to the theoretical nature of these numbers, and for the purpose of this problem, we shall assume that a number is Lychrel until proven otherwise. In addition you are given that for every number below ten-thousand, it will either (i) become a palindrome in less than fifty iterations, or, (ii) no one, with all the computing power that exists, has managed so far to map it to a palindrome. In fact, $10677$ is the first number to be shown to require over fifty iterations before producing a palindrome: $4668731596684224866951378664$ ($53$ iterations, $28$-digits). |
||
| 17 | |||
| 18 | Surprisingly, there are palindromic numbers that are themselves Lychrel numbers; the first example is $4994$. |
||
| 19 | |||
| 20 | How many Lychrel numbers are there below ten-thousand? |
||
| 21 | |||
| 22 | NOTE: Wording was modified slightly on 24 April 2007 to emphasise the theoretical nature of Lychrel numbers. |
||
| 23 | |||
| 24 | ## Lychrel数 |
||
| 25 | 47とその反転を足し合わせると, 47 + 74 = 121となり, 回文数になる. |
||
| 26 | |||
| 27 | 全ての数が素早く回文数になるわけではない. 349を考えよう, |
||
| 28 | |||
| 29 | 1. 349 + 943 = 1292, |
||
| 30 | 1. 1292 + 2921 = 4213 |
||
| 31 | 1. 4213 + 3124 = 7337 |
||
| 32 | |||
| 33 | 349は, 3回の操作を経て回文数になる. |
||
| 34 | |||
| 35 | まだ証明はされていないが, 196のようないくつかの数字は回文数にならないと考えられている. 反転したものを足すという操作を経ても回文数にならないものをLychrel数と呼ぶ. 先のような数の理論的な性質により, またこの問題の目的のために, Lychrel数で無いと証明されていない数はLychrel数だと仮定する. |
||
| 36 | |||
| 37 | 更に, 10000未満の数については,常に以下のどちらか一方が成り立つと仮定してよい. |
||
| 38 | |||
| 39 | 1. 50回未満の操作で回文数になる |
||
| 40 | 1. まだ誰も回文数まで到達していない |
||
| 41 | |||
| 42 | 実際, 10677が50回以上の操作を必要とする最初の数である: 4668731596684224866951378664 (53回の操作で28桁のこの回文数になる). |
||
| 43 | |||
| 44 | 驚くべきことに, 回文数かつLychrel数であるものが存在する. 最初の数は4994である. |
||
| 45 | |||
| 46 | 10000未満のLychrel数の個数を答えよ. |
||
| 47 | |||
| 48 | 注: 2007/04/24にLychrel数の理論的な性質を強調するために文面が修正された. |
||
| 49 | |||
| 50 | ```scheme |
||
| 51 | ``` |