プロジェクト

全般

プロフィール

Problem 55 » 履歴 » バージョン 1

Noppi, 2024/01/20 08:23

1 1 Noppi
[ホーム](https://redmine.noppi.jp) - [[Wiki|Project Euler]]
2
# [[Problem 55]]
3
4
## Lychrel Numbers
5
If we take $47$, reverse and add, $47 + 74 = 121$, which is palindromic.
6
7
<p>Not all numbers produce palindromes so quickly. For example,</p>
8
\begin{align}
9
349 + 943 &amp;= 1292\\
10
1292 + 2921 &amp;= 4213\\
11
4213 + 3124 &amp;= 7337
12
\end{align}
13
14
That is, $349$ took three iterations to arrive at a palindrome.
15
16
Although no one has proved it yet, it is thought that some numbers, like $196$, never produce a palindrome. A number that never forms a palindrome through the reverse and add process is called a Lychrel number. Due to the theoretical nature of these numbers, and for the purpose of this problem, we shall assume that a number is Lychrel until proven otherwise. In addition you are given that for every number below ten-thousand, it will either (i) become a palindrome in less than fifty iterations, or, (ii) no one, with all the computing power that exists, has managed so far to map it to a palindrome. In fact, $10677$ is the first number to be shown to require over fifty iterations before producing a palindrome: $4668731596684224866951378664$ ($53$ iterations, $28$-digits).
17
18
Surprisingly, there are palindromic numbers that are themselves Lychrel numbers; the first example is $4994$.
19
20
How many Lychrel numbers are there below ten-thousand?
21
22
NOTE: Wording was modified slightly on 24 April 2007 to emphasise the theoretical nature of Lychrel numbers.
23
24
## Lychrel数
25
47とその反転を足し合わせると, 47 + 74 = 121となり, 回文数になる.
26
27
全ての数が素早く回文数になるわけではない. 349を考えよう,
28
29
1. 349 + 943 = 1292,
30
1. 1292 + 2921 = 4213
31
1. 4213 + 3124 = 7337
32
33
349は, 3回の操作を経て回文数になる.
34
35
まだ証明はされていないが, 196のようないくつかの数字は回文数にならないと考えられている. 反転したものを足すという操作を経ても回文数にならないものをLychrel数と呼ぶ. 先のような数の理論的な性質により, またこの問題の目的のために, Lychrel数で無いと証明されていない数はLychrel数だと仮定する.
36
37
更に, 10000未満の数については,常に以下のどちらか一方が成り立つと仮定してよい.
38
39
1. 50回未満の操作で回文数になる
40
1. まだ誰も回文数まで到達していない
41
42
実際, 10677が50回以上の操作を必要とする最初の数である: 4668731596684224866951378664 (53回の操作で28桁のこの回文数になる).
43
44
驚くべきことに, 回文数かつLychrel数であるものが存在する. 最初の数は4994である.
45
46
10000未満のLychrel数の個数を答えよ.
47
48
注: 2007/04/24にLychrel数の理論的な性質を強調するために文面が修正された.
49
50
```scheme
51
```