Problem 38 » 履歴 » バージョン 1
Noppi, 2024/01/15 02:14
1 | 1 | Noppi | [ホーム](https://redmine.noppi.jp) - [[Wiki|Project Euler]] |
---|---|---|---|
2 | # [[Problem 38]] |
||
3 | |||
4 | ## Pandigital Multiples |
||
5 | <p>Take the number $192$ and multiply it by each of $1$, $2$, and $3$:</p> |
||
6 | \begin{align} |
||
7 | 192 \times 1 &= 192\\ |
||
8 | 192 \times 2 &= 384\\ |
||
9 | 192 \times 3 &= 576 |
||
10 | \end{align} |
||
11 | |||
12 | By concatenating each product we get the $1$ to $9$ pandigital, $192384576$. We will call $192384576$ the concatenated product of $192$ and $(1,2,3)$. |
||
13 | |||
14 | The same can be achieved by starting with $9$ and multiplying by $1$, $2$, $3$, $4$, and $5$, giving the pandigital, $918273645$, which is the concatenated product of $9$ and $(1,2,3,4,5)$. |
||
15 | |||
16 | What is the largest $1$ to $9$ pandigital $9$-digit number that can be formed as the concatenated product of an integer with $(1,2, \dots, n)$ where $n \gt 1$? |
||
17 | |||
18 | ## パンデジタル倍数 |
||
19 | 192 に 1, 2, 3 を掛けてみよう. |
||
20 | |||
21 | > 192 × 1 = 192 |
||
22 | > 192 × 2 = 384 |
||
23 | > 192 × 3 = 576 |
||
24 | |||
25 | 積を連結することで1から9の パンデジタル数 192384576 が得られる. 192384576 を 192 と (1,2,3) の連結積と呼ぶ. |
||
26 | |||
27 | 同じようにして, 9 を 1,2,3,4,5 と掛け連結することでパンデジタル数 918273645 が得られる. これは 9 と (1,2,3,4,5) との連結積である. |
||
28 | |||
29 | 整数と (1,2,...,n) (n > 1) との連結積として得られる9桁のパンデジタル数の中で最大のものはいくつか? |
||
30 | |||
31 | ```scheme |
||
32 | (import (scheme base) |
||
33 | (gauche base)) |
||
34 | |||
35 | (define (valid-num? n) |
||
36 | (assume (exact-integer? n)) |
||
37 | (assume (<= 236 n 362)) |
||
38 | (let ([table (make-vector 10 #f)]) |
||
39 | (set! (vector-ref table 0) #t) |
||
40 | (set! (vector-ref table 1) #t) |
||
41 | (set! (vector-ref table 8) #t) |
||
42 | (set! (vector-ref table 9) #t) |
||
43 | (let loop ([rest n]) |
||
44 | (if (zero? rest) |
||
45 | #t |
||
46 | (let ([check-n (mod rest 10)] |
||
47 | [rest (div rest 10)]) |
||
48 | (cond |
||
49 | [(vector-ref table check-n) #f] |
||
50 | [else |
||
51 | (set! (vector-ref table check-n) #t) |
||
52 | (loop rest)])))))) |
||
53 | |||
54 | (define (pandigital? n) |
||
55 | (assume (exact-integer? n)) |
||
56 | (assume (<= 1_0000_0000 n 9_9999_9999)) |
||
57 | (let ([table (make-vector 10 #f)]) |
||
58 | (set! (vector-ref table 0) #t) |
||
59 | (let loop ([rest n]) |
||
60 | (if (zero? rest) |
||
61 | #t |
||
62 | (let ([check-n (mod rest 10)] |
||
63 | [rest (div rest 10)]) |
||
64 | (cond |
||
65 | [(vector-ref table check-n) #f] |
||
66 | [else |
||
67 | (set! (vector-ref table check-n) #t) |
||
68 | (loop rest)])))))) |
||
69 | |||
70 | (define find-max-pandigital |
||
71 | (let loop ([n 362]) |
||
72 | (if (< n 236) |
||
73 | (errorf "見つかりませんでした~%") |
||
74 | (let ([d9 (+ 9_000_18_000 |
||
75 | (* n 1_00_000) |
||
76 | (* n 2))]) |
||
77 | (if (pandigital? d9) |
||
78 | d9 |
||
79 | (loop (- n 1))))))) |
||
80 | |||
81 | (define answer-38 find-max-pandigital) |
||
82 | |||
83 | (format #t "38: ~d~%" answer-38) |
||
84 | ``` |