Problem 35 » 履歴 » バージョン 2
Noppi, 2024/01/14 08:36
| 1 | 1 | Noppi | [ホーム](https://redmine.noppi.jp) - [[Wiki|Project Euler]] |
|---|---|---|---|
| 2 | # [[Problem 35]] |
||
| 3 | |||
| 4 | ## Circular Primes |
||
| 5 | The number, $197$, is called a circular prime because all rotations of the digits: $197$, $971$, and $719$, are themselves prime. |
||
| 6 | |||
| 7 | There are thirteen such primes below $100$: $2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79$, and $97$. |
||
| 8 | |||
| 9 | How many circular primes are there below one million? |
||
| 10 | |||
| 11 | ## 巡回素数 |
||
| 12 | 197は巡回素数と呼ばれる. 桁を回転させたときに得られる数 197, 971, 719 が全て素数だからである. |
||
| 13 | |||
| 14 | 100未満には巡回素数が13個ある: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, および97である. |
||
| 15 | |||
| 16 | 100万未満の巡回素数はいくつあるか? |
||
| 17 | |||
| 18 | ```scheme |
||
| 19 | 2 | Noppi | (import (scheme base) |
| 20 | (gauche base) |
||
| 21 | (math prime) |
||
| 22 | (scheme list)) |
||
| 23 | |||
| 24 | (define temp-primes (primes)) |
||
| 25 | |||
| 26 | (define (number-of-digit n) |
||
| 27 | (assume (exact-integer? n)) |
||
| 28 | (assume (<= 0 n 99_9999)) |
||
| 29 | (cond |
||
| 30 | [(<= 0 n 9) 1] |
||
| 31 | [(<= 10 n 99) 2] |
||
| 32 | [(<= 100 n 999) 3] |
||
| 33 | [(<= 1000 n 9999) 4] |
||
| 34 | [(<= 1_0000 n 9_9999) 5] |
||
| 35 | [(<= 10_0000 n 99_9999) 6])) |
||
| 36 | ;(if (zero? n) |
||
| 37 | ; 1 |
||
| 38 | ; (+ (floor->exact (fllog10 n)) |
||
| 39 | ; 1))) |
||
| 40 | |||
| 41 | (define (ml&eml n) |
||
| 42 | (assume (exact-integer? n)) |
||
| 43 | (assume (<= 0 n)) |
||
| 44 | (let* ([dn (number-of-digit n)] |
||
| 45 | [module-num (expt 10 |
||
| 46 | (- dn 1))] |
||
| 47 | [ml (div n module-num)] |
||
| 48 | [eml (mod n module-num)]) |
||
| 49 | (values ml eml))) |
||
| 50 | |||
| 51 | (define (circular-digits n) |
||
| 52 | (assume (exact-integer? n)) |
||
| 53 | (assume (<= 0 n)) |
||
| 54 | (if (< n 10) |
||
| 55 | `(,n) |
||
| 56 | (let loop ([num n] [result `(,n)]) |
||
| 57 | (let-values ([(ml-num eml-num) (ml&eml num)]) |
||
| 58 | (if (< eml-num |
||
| 59 | (expt 10 |
||
| 60 | (- (number-of-digit n) 2))) |
||
| 61 | '() |
||
| 62 | (let ([next (+ (* eml-num 10) |
||
| 63 | ml-num)]) |
||
| 64 | (if (find (cut = next <>) |
||
| 65 | result) |
||
| 66 | (reverse result) |
||
| 67 | (loop next (cons next result))))))))) |
||
| 68 | |||
| 69 | (define (circular-prime? n) |
||
| 70 | (let ([cd (circular-digits n)]) |
||
| 71 | (and (not (null? cd)) |
||
| 72 | (every prime? cd)))) |
||
| 73 | |||
| 74 | (define (prime? n) |
||
| 75 | (= (car |
||
| 76 | (drop-while (cut < <> n) |
||
| 77 | temp-primes)) |
||
| 78 | n)) |
||
| 79 | |||
| 80 | (define (primes-list n) |
||
| 81 | (take-while (cut <= <> n) temp-primes)) |
||
| 82 | |||
| 83 | (define answer-35 |
||
| 84 | (length (filter circular-prime? |
||
| 85 | (primes-list 99_9999)))) |
||
| 86 | |||
| 87 | (format #t "35: ~d~%" answer-35) |
||
| 88 | 1 | Noppi | ``` |