プロジェクト

全般

プロフィール

操作

Problem 29 » 履歴 » リビジョン 1

リビジョン 1/2 | 次 »
Noppi, 2024/01/12 12:58


ホーム - Project Euler

Problem 29

Distinct Powers

Consider all integer combinations of $a^b$ for $2 \le a \le 5$ and $2 \le b \le 5$:

\begin{matrix} 2^2=4, &2^3=8, &2^4=16, &2^5=32\\ 3^2=9, &3^3=27, &3^4=81, &3^5=243\\ 4^2=16, &4^3=64, &4^4=256, &4^5=1024\\ 5^2=25, &5^3=125, &5^4=625, &5^5=3125 \end{matrix} If they are then placed in numerical order, with any repeats removed, we get the following sequence of $15$ distinct terms: $$4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125.$$ How many distinct terms are in the sequence generated by $a^b$ for $2 \le a \le 100$ and $2 \le b \le 100$?

個別のべき乗

$2 \le a \le 5$ と $2 \le b \le 5$ について, $a^b$ を全て考えてみよう:

\begin{matrix} 2^2=4, &2^3=8, &2^4=16, &2^5=32\\ 3^2=9, &3^3=27, &3^4=81, &3^5=243\\ 4^2=16, &4^3=64, &4^4=256, &4^5=1024\\ 5^2=25, &5^3=125, &5^4=625, &5^5=3125 \end{matrix} これらを小さい順に並べ, 同じ数を除いたとすると, 15個の項を得る: $$4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125.$$ $2 \le a \le 100$, $2 \le b \le 100$ で同じことをしたときいくつの異なる項が存在するか?

Noppi2024/01/12に更新 · 1件の履歴