プロジェクト

全般

プロフィール

Problem 18 » 履歴 » バージョン 7

Noppi, 2024/01/29 13:56

1 1 Noppi
[ホーム](https://redmine.noppi.jp) - [[Wiki|Project Euler]]
2
# [[Problem 18]]
3
4
## Maximum Path Sum I
5
By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is $23$.
6 7 Noppi
7 1 Noppi
<div style="text-align:center"><span style="color:red">3</span><br />
8
<span style="color:red">7</span> 4<br />
9
2 <span style="color:red">4</span> 6<br />
10
8 5 <span style="color:red">9</span> 3</div>
11 7 Noppi
12 1 Noppi
That is, $3 + 7 + 4 + 9 = 23$.
13 7 Noppi
14 1 Noppi
Find the maximum total from top to bottom of the triangle below:
15 7 Noppi
16 1 Noppi
<div style="text-align:center">75<br />
17
95 64<br />
18
17 47 82<br />
19
18 35 87 10<br />
20
20 04 82 47 65<br />
21
19 01 23 75 03 34<br />
22
88 02 77 73 07 63 67<br />
23
99 65 04 28 06 16 70 92<br />
24
41 41 26 56 83 40 80 70 33<br />
25
41 48 72 33 47 32 37 16 94 29<br />
26
53 71 44 65 25 43 91 52 97 51 14<br />
27
70 11 33 28 77 73 17 78 39 68 17 57<br />
28
91 71 52 38 17 14 91 43 58 50 27 29 48<br />
29
63 66 04 68 89 53 67 30 73 16 69 87 40 31<br />
30
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23</div>
31 3 Noppi
32 6 Noppi
**NOTE:** As there are only $16384$ routes, it is possible to solve this problem by trying every route. However, [[Problem 67]], is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)
33 1 Noppi
34
## 数字の文字数
35
以下の三角形の頂点から下の行の隣接する数字を通って下まで移動するとき, その数値の和の最大値は23になる.
36 7 Noppi
37 1 Noppi
<div style="text-align:center"><span style="color:red">3</span><br />
38
<span style="color:red">7</span> 4<br />
39
2 <span style="color:red">4</span> 6<br />
40
8 5 <span style="color:red">9</span> 3</div>
41 7 Noppi
42 1 Noppi
この例では 3 + 7 + 4 + 9 = 23.
43 7 Noppi
44 1 Noppi
以下の三角形を頂点から下まで移動するとき, その最大の和を求めよ.
45 7 Noppi
46 1 Noppi
<div style="text-align:center">75<br />
47
95 64<br />
48
17 47 82<br />
49
18 35 87 10<br />
50
20 04 82 47 65<br />
51
19 01 23 75 03 34<br />
52
88 02 77 73 07 63 67<br />
53
99 65 04 28 06 16 70 92<br />
54
41 41 26 56 83 40 80 70 33<br />
55
41 48 72 33 47 32 37 16 94 29<br />
56
53 71 44 65 25 43 91 52 97 51 14<br />
57
70 11 33 28 77 73 17 78 39 68 17 57<br />
58
91 71 52 38 17 14 91 43 58 50 27 29 48<br />
59
63 66 04 68 89 53 67 30 73 16 69 87 40 31<br />
60
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23</div>
61 2 Noppi
62 6 Noppi
**注:** ここではたかだか 16384 通りのルートしかないので, すべてのパターンを試すこともできる. [[Problem 67]] は同じ問題だが100行あるので, 総当りでは解けない. もっと賢い方法が必要である.
63 1 Noppi
64
```scheme
65 4 Noppi
#!r6rs
66
#!chezscheme
67
68
(import (chezscheme))
69
70
(define triangle
71
  '#(#(75)
72
     #(95 64)
73
     #(17 47 82)
74
     #(18 35 87 10)
75
     #(20 04 82 47 65)
76
     #(19 01 23 75 03 34)
77
     #(88 02 77 73 07 63 67)
78
     #(99 65 04 28 06 16 70 92)
79
     #(41 41 26 56 83 40 80 70 33)
80
     #(41 48 72 33 47 32 37 16 94 29)
81
     #(53 71 44 65 25 43 91 52 97 51 14)
82
     #(70 11 33 28 77 73 17 78 39 68 17 57)
83
     #(91 71 52 38 17 14 91 43 58 50 27 29 48)
84
     #(63 66 04 68 89 53 67 30 73 16 69 87 40 31)
85
     #(04 62 98 27 23 09 70 98 73 93 38 53 60 04 23)))
86
87
(define (walkthrough triangle)
88
  (let* ([triangle-length (vector-length triangle)]
89 5 Noppi
         [initial-result (let ([last-vector (vector-ref triangle (sub1 triangle-length))])
90
                           (map
91
                             (lambda (num)
92
                               `(,num ,num))
93
                             (vector->list last-vector)))])
94 4 Noppi
    (if (= triangle-length 1)
95 5 Noppi
      (cdar initial-result)
96 4 Noppi
      (let loop1 ([current-index (- triangle-length 2)]
97
                  [result initial-result])
98 5 Noppi
        (let* ([current-vector (vector-ref triangle current-index)]
99
               [initial-list (vector->list current-vector)])
100 1 Noppi
          (if (zero? current-index)
101 5 Noppi
            (let* ([i-cell (car result)]
102
                   [j-cell (cadr result)]
103 4 Noppi
                   [i-value (car i-cell)]
104
                   [j-value (car j-cell)]
105
                   [i-tree (cdr i-cell)]
106
                   [j-tree (cdr j-cell)]
107 5 Noppi
                   [current-value (car initial-list)])
108 4 Noppi
              (if (<= j-value i-value)
109
                (cons current-value i-tree)
110
                (cons current-value j-tree)))
111 5 Noppi
            (let loop2 ([rest-nums initial-list]
112
                        [rest-tree result]
113
                        [temp-tree '()])
114
              (if (null? rest-nums)
115
                (loop1 (sub1 current-index) (reverse temp-tree))
116
                (let* ([i-cell (car rest-tree)]
117
                       [j-cell (cadr rest-tree)]
118
                       [i-value (car i-cell)]
119
                       [j-value (car j-cell)]
120
                       [i-tree (cdr i-cell)]
121
                       [j-tree (cdr j-cell)]
122
                       [current-value (car rest-nums)])
123
                  (if (<= j-value i-value)
124
                    (loop2 (cdr rest-nums)
125
                           (cdr rest-tree)
126
                           (cons (cons (+ current-value i-value) (cons current-value i-tree))
127
                                 temp-tree))
128
                    (loop2 (cdr rest-nums)
129
                           (cdr rest-tree)
130
                           (cons (cons (+ current-value j-value) (cons current-value j-tree))
131
                                 temp-tree))))))))))))
132 4 Noppi
133
(define answer-18
134
  (apply + (walkthrough triangle)))
135
136
(printf "18: ~D~%" answer-18)
137 1 Noppi
```